Tag: Algorithm to decide whether CFL is empty

Algorithm To Decide Whether CFL Is Empty

Context Free Language-

 

Before you go through this article, make sure that you have gone through the previous article on Context Free Language.

 

We have discussed-

  • Context free language is generated using a context free grammar.
  • Each context free language is accepted by a Pushdown automaton.

 

In this article, we will discuss a decision algorithm of CFL.

 

Algorithm To Decide Whether CFL Is Empty Or Not-

 

If we can not derive any string of terminals from the given grammar,

then its language is called as an Empty Language.

L(G) = ϕ

 

For a given CFG, there exists an algorithm to decide whether its language is empty L(G) = ϕ or not.

 

Algorithm-

 

  • Remove all the useless symbols from the grammar.
  • A useless symbol is one that does not derive any string of terminals.
  • If the start symbol is found to be useless, then language is empty otherwise not.

 

Remember

The language generated from a CFG is non-empty iff the start symbol is generating.

 

Example-

 

Consider the following grammar-

S → XY

X → AX

X → AA

A → a

Y → BY

Y → BB

B → b

 

Now, let us check whether language generated by this grammar is empty or not.

 

The given grammar can be written as-

S → aabb

X → aX

X → aa

A → a

Y → bY

Y → bb

B → b

 

Clearly,

  • The start symbol generates at least one string (many more are possible).
  • Therefore, start symbol is useful.
  • Thus, language generated by the given grammar is non-empty.

 

L(G) ≠ ϕ

 

NOTE-

 

If L(G) = { ∈ } i.e.

  • If the language generated by a grammar contains only a null string,
  • then it is considered as non-empty.

 

Next Article- Algorithm To Decide Whether CFL Is Finite

 

Get more notes and other study material of Theory of Automata and Computation.

Watch video lectures by visiting our YouTube channel LearnVidFun.